VSP - A Multi-Purpose Schrödinger-Poisson Solver for TCAD Applications
نویسندگان
چکیده
Numerous technological innovations, including material and process changes such as high–k gate dielectrics and metal gate electrodes, are investigated to meet the upcoming scaling requirements. Furthermore, novel structures such as ultra-thin body and multiple-gate MOSFETs are expected to be introduced to suppress short-channel effects [1]. To overcome the technological problems, further theoretical and experimental research is needed which requires an extensive use of computer simulation.
منابع مشابه
An Efficient Algorithm for General 3D-Seismic Body Waves (SSP and VSP Applications)
Abstract The ray series method may be generalized using a ray centered coordinate system for general 3D-heterogeneous media. This method is useful for Amplitude Versus Offset (AVO) seismic modeling, seismic analysis, interpretational purposes, and comparison with seismic field observations.For each central ray (constant ray parameter), the kinematic (the eikonal) and dynamic ray tracing system ...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملNumerical Analysis of Gate Stacks
Numerous technological innovations, including material and process changes such as high–k gate dielectrics and metal gate electrodes, are investigated to meet the upcoming scaling requirements while keeping the gate leakage current within tolerable limits [1]. To overcome the technological problems, further theoretical and experimental research is needed which requires an extensive use of compu...
متن کاملA Connectivity-Aware Multi-level Finite-Element System for Solving Laplace-Beltrami Equations
Recent work on octree-based finite-element systems has developed a multigrid solver for Poisson equations on meshes. While the idea of defining a regularly indexed function space has been successfully used in a number of applications, it has also been noted that the richness of the function space is limited because the function values can be coupled across locally disconnected regions. In this ...
متن کاملThe Exponentiated Poisson-Lindley Distribution; Features and Applications in Reliability
Abstract. In this paper a new three-parameter lifetime distribution named “the Exponentialed Lindley-Poisson (E-LP) distribution” has been suggested that it has an increasing, decreasing and invers bathtube hazard rate depending on the parameter values. The (E-LP) distribution has applications in economics, actuarial modeling, reliability modeling, lifetime and queuing problems and biological ...
متن کامل